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prepotential, is elucidated in the real formalism. The property MΩM = Ω, where Ω is
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lation. In this setting the matrix M coincides with the (negative of the) Hessian matrix

H(S) = ∂2S
∂P I∂P J of a certain hamiltonian real function S(P ), which also provides the metric

of the special Kähler manifold. When S(P ) = S(U +Ū) is regarded as a “Kähler potential”

of a complex manifold with coordinates U I = 1

2
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1. Introduction

Special geometry [1 – 3] plays an important role in the description of the moduli space

of Calabi-Yau compactifications for supergravity effective actions down to D = 4 dimen-

sions [4] and also for more general compactifications when fluxes [5, 6] of different nature

are turned on.

More interestingly, special geometry has served as a basis to study the so-called “attrac-

tor mechanism” [7 – 10] for black hole backgrounds preserving at most four supercharges.

In the rigid case [11 – 14], special geometry was an important tool for the Seiberg-

Witten [15] analysis of non-perturbative properties of N = 2 super Yang-Mills theories.

An important ingredient in special geometry is the existence of a flat symplectic bundle

with structure group Sp(2n, R), (Sp(2n + 2, R) in the local case) [3, 16, 17, 10] over the

special Kähler manifold of complex dimension n, n being the number of vector multiplets

in the theory.

It is the aim of the present work to elucidate some properties of such a rich struc-

ture when Darboux real special symplectic sections are adopted [18, 16, 17, 19] for the

description of underlying mathematical structure. This description is particularly suitable

when background charges are introduced which are related to fluxes of vector field-strength

2-forms over the space-time manifold. Such a description has recently been used to sim-

plify the entropy area formula [20] for extremal black holes and its relation to superstring

theory [21]. We will limit ourselves to giving general results for the case of rigid special ge-

ometry but many of these results can be extended to the local case which will be described

elsewhere.
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We consider (rigid) special geometry in real special (Darboux) coordinates P I = (pΛ, qΛ),

Λ = 1, . . . , n with the Kähler 2-form

ω = idqΛ ∧ dpΛ =
i

2
dP ∧ ΩdP (1.1)

where

Ω =

(

0 −1

1 0

)

is the symplectic invariant form.

The special geometry data turn out to be encoded in a real “Hamiltonian” function

S(p, q), originaly introduced by Cecotti et al. [18] and by Freed [16], which is the Leg-

endre transform of the imaginary part of the holomophic prepotential F (XΛ) of special

geometry [2, 3, 22 – 24]. The holomorphic symplectic sections

V = (XΛ, FΛ) (1.2)

are related to the real variables as follows:

<XΛ = pΛ =XΛ = φΛ =
∂S(p, q)

∂qΛ

(1.3)

<FΛ = qΛ =FΛ = ψΛ = −
∂S(p, q)

∂pΛ
(1.4)

If we encode the imaginary parts in the symplectic real vector II = (φΛ, ψΛ), it turns out

that

II = Ω′IJ ∂S

∂P J
(1.5)

with

Ω′IJ = −ΩIJ =

(

0 1

−1 0

)

In this note we will show the special property played by the 2n×2n real symmetric positive-

definite matrix [23, 8]

M(<F ,=F) =

(

=F + <F=F−1<F −<F=F−1

−=F−1<F =F−1

)

(1.6)

which in the real formulation turns out to be related to the Hessian matrix

HIJ(S) =
∂2S

∂P I∂P J
(1.7)

namely

M(p, q) = −H(S) (1.8)

Note that M is positive as a consequence of the fact that =F is positive [23, 8] which is

required by the positivity of the metric (see eq. (2.22)). The matrix M is known to play
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a special role when a background (symplectic) charge vector Q = (mΛ, eΛ) is introduced

and a “central charge” holomorphic function

Z = 〈Q,V 〉 = QT ΩV = XΛeΛ − mΛFΛ (1.9)

is defined.

In rigid special geometry1 the following identity holds (for the local case, see later):

Q + iΩMQ = −2igΛΣ̄∂ΛV ∂̄ΣZ̄ (1.10)

Multiplying by QT Ω on the left we get the “central charge” potential function

1

2
QT MQ = gΛΣ̄∂ΛZ∂̄ΣZ̄ (1.11)

where gΛΣ̄ is the inverse of the metric defined below.

The Hessian (1.7) gives also the metric of the original Kähler manifold

gΛΣ̄dzΛ ⊗ dz̄Σ =
∂2K

∂XΛ∂X̄Σ
dXΛ ⊗ dX̄Σ (1.12)

where special coordinates zΛ = XΛ have been adopted and

K = −i(X̄ΛFΛ − XΛF̄Λ) = −i〈V, V̄ 〉

namely

gΛΣ̄dzΛ ⊗ dz̄Σ = −2HIJdP I ⊗ dP J (1.13)

Another interesting observation is related to the c-map hypermultiplet geometry as defined

in references [18, 26].

By adopting real symplectic coordinates ZI = (ζΛ, ζ̃Λ) for the (other half) hypermul-

tiplet coordinates, the hyperkähler metric has the form [18, 26, 27]

gΛΣ̄dzΛ ⊗ dz̄Σ + 2MIJ(z, z̄)dZI ⊗ dZJ (1.14)

Adopting Darboux coordinates for the Kähler manifold M, and because of (1.8) and (1.13),

we then have

−2
∂2S

∂P I∂P J
(dP I ⊗ dP J + dZI ⊗ dZJ) (1.15)

By complexifying the Darboux coordinates as U I = 1

2
(P I + iZI) we see that (1.14) is a

Kähler metric with Kähler potential [17]

K(U, Ū) = −8S(U + Ū) (1.16)

Note that, as expected from the results of [26], the metric (1.14) has 2n real isometries

U I 7−→ U I + iaI (1.17)

1See ref. [25] for an intrinsic definition.
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In the “complex” formulation of Cecotti et al. [18], where the (second half of the) hyper-

multiplet coordinates were denoted by WΛ, the same isometries were acting as

WΛ 7−→ WΛ + iαΛ (1.18)

WΛ 7−→ WΛ + (=F )ΛΣβΣ (1.19)

and the Kähler potential was [18]

N(XΛ,WΛ) = K(X, X̄) + (=F−1)ΛΣ(WΛ + W̄Λ)(WΣ + W̄Σ) (1.20)

In the local case a particular choice of real coordinates has recently been used [20, 19] in

conjunction with the modification of the black hole entropy formula due to higher curva-

ture corrections and also in relating the entropy area formula with the topological string

partition function [21].

The paper is organized as follows. In section 2 we give an explicit derivation of the

special Kähler metric in the Darboux coordinates [16, 17] and, by using the properties

of the M matrix we arrive at equations (1.7), (1.13), (1.12). In section 3 we discuss real

special coordinates in connection with the central charge function. We finally comment

on some central charge relations and some metric differential identities for local special

geometry.

2. Complex and real special coordinates

2.1 Rigid real sections and the functional S(p, q)

Let (XΛ, FΛ) be the rigid holomorphic symplectic sections depending on the holomorphic

coordinates zΛ [24]

XΛ = XΛ(z) FΛ = FΛ(z) (2.1)

Under some general assumptions we can take XΛ as the holomorphic coordinates XΛ = zΛ

such that

FΛ(X) =
∂F (X)

∂XΛ
(2.2)

for a suitable function F (X).

The holomorphicity condition reads

∂̄ΣXΛ = 0 ∂̄ΣFΛ = 0 (2.3)

Decomposing (XΛ, FΛ) in terms of real and imaginary parts we can write the holomorphic

symplectic sections in terms of real variables

XΛ = pΛ + iφΛ FΛ = qΛ + iψΛ (2.4)

Define the function L = =F > 0, the imaginary part of F (X). Then it can be proved that

(qΛ, φΛ) and (pΛ, ψΛ) are pairs of conjugate variables for L

qΛ =
∂L

∂φΛ
(2.5)
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ψΛ =
∂L

∂pΛ
(2.6)

We perform a Legendre transform on L of the form

S(p, q) = qΛ · φΛ(p, q) − L(p, φ(p, q)) (2.7)

where we have to invert equation (2.5) to write φ = φ(p, q). Then, the next set of equations

follows:

φΛ =
∂S

∂qΛ

(2.8)

−ψΛ =
∂S

∂pΛ
(2.9)

Our change of coordinates (pΛ, φΛ) 7→ (pΣ, qΣ) is of the form

pΣ = δΣ
ΛpΛ qΣ = qΣ(pΛ, φΛ) (2.10)

and, accordingly, the inverse change of coordinates (pΣ, qΣ) 7→ (pΛ, φΛ) is

pΛ = δΛ
ΣpΣ φΛ = φΛ(pΣ, qΣ) (2.11)

In the following we use the notation

∂f(x, y)

∂x

∣

∣

∣

y
=

∂f

∂x

∂f(x, y)

∂y

∣

∣

∣

x
=

∂f

∂y

where the role of f(x, y) will be played by qΣ(p, φ), φΛ(p, q) as defined in eqs. (2.10), (2.11).

Let J be the Jacobian matrix. It follows from J(J)−1 = 1 = (J)−1J that

∂qΣ

∂φΛ

∂φΛ

∂qΓ

= δΣ
Γ =

∂qΣ

∂φΛ

∂2S

∂qΛ∂qΓ

(2.12)

i.e.
∂qΣ

∂φΛ
=

(

∂2S

∂qΛ∂qΣ

)−1

=
∂2L

∂φΣ∂φΛ
(2.13)

and we also have

∂qΣ

∂pΛ
δΛ
Γ +

∂qΣ

∂φΛ

∂φΛ

∂pΓ
=

∂qΣ

∂pΛ
δΛ
Γ +

(

∂2S

∂qΣ∂qΛ

)−1
∂2S

∂qΛ∂pΓ
= 0 (2.14)

In fact, equations (2.12) to (2.14) follow not only from the Jacobian but also from the

holomorphicity conditions (2.3). These also imply

∂qΣ

∂φΛ
= −

∂ψΣ

∂pΛ
−

∂qΓ

∂pΛ

∂ψΣ

∂qΓ

(2.15)

where ψ = ψ(p, q) and its partial derivatives are computed following the notation explained

before. The analyticity of L = =F , for F holomorphic, also imply

∂2L

∂φΛ∂φΣ
+

∂2L

∂pΛ∂pΣ
= 0

∂2L

∂φΛ∂pΣ
=

∂2L

∂pΛ∂φΣ

In terms of S eq. (2.15) can be written as
(

∂2S

∂qΣ∂qΛ

)−1

=
∂2S

∂pΣ∂pΛ
+

∂qΓ

∂pΛ

∂2S

∂qΓ∂pΣ
(2.16)

These relations will be useful when simplify the metric in the next section.
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2.2 Kähler potential and metric

In this section we show that the Kähler potential K can be expressed directly in terms of

S(p, q). Then, the metric can also be expressed directly in terms of S(p, q), since

g = gΛΣ̄dXΛ ⊗ dX̄Σ (2.17)

with

gΛΣ̄ =
∂2K

∂XΛ∂X̄Σ
(2.18)

In the rigid case the Kähler potential is

K = i(XΛF̄Λ − X̄ΛFΛ) (2.19)

The Kähler form then is

ω = −
1

4
∂Λ∂̄ΣK dXΛ ∧ dX̄Σ = −

1

2
=FΛΣ dXΛ ∧ dX̄Σ (2.20)

so that

ω = idqΛ ∧ dpΛ (2.21)

is a symplectic form. The metric will be

gΛΣ̄ = 2=FΛΣ > 0 (2.22)

Using equations (2.12) to (2.16), one arrives at

gΛΣ̄ = −2

(

∂2S

∂pΛ∂pΣ
+

∂qΓ

∂pΣ

∂2S

∂qΓ∂pΛ

)

= −2

(

∂2S

∂qΛ∂qΣ

)−1

(2.23)

Note that the symmetry properties FΛΣ = FΣΛ imply

∂qΛ

∂pΣ
=

∂qΣ

∂pΛ
(2.24)

∂qΓ

∂φΛ

∂2S

∂qΓ∂pΣ
=

∂qΓ

∂φΣ

∂2S

∂qΓ∂pΛ
(2.25)

∂qΓ

∂pΛ

∂2S

∂qΓ∂pΣ
=

∂qΓ

∂pΣ

∂2S

∂qΓ∂pΛ
(2.26)

which will help in the simplifications.

The change of variables in the differentials gives

dXΛ ⊗ dX̄Σ =

(

δΛ
Γ δΣ

∆ +
∂2S

∂qΛ∂pΓ

∂2S

∂qΣ∂p∆
+ i

(

∂2S

∂qΛ∂pΓ
δΣ
∆ −

∂2S

∂qΣ∂p∆
δΛ
Γ

))

dpΓ ⊗ dp∆

+

(

∂2S

∂qΛ∂q∆

∂2S

∂qΣ∂pΓ

+
∂2S

∂qΛ∂pΓ

∂2S

∂qΣ∂q∆

+ i

(

∂2S

∂qΛ∂q∆

δΣ
Γ −

∂2S

∂qΣ∂q∆

δΛ
Γ

))

dpΓ ⊗ dq∆

+

(

∂2S

∂qΛ∂qΓ

∂2S

∂qΣ∂q∆

)

dqΓ ⊗ dq∆ (2.27)
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Finally, using again equations (2.12) to (2.16), and (2.24) to (2.26) the following expression

is obtained:

g(p, q) = −2

(

∂2S

∂pΛ∂pΣ
dpΛ ⊗ dpΣ + 2

∂2S

∂pΛ∂qΣ

dpΛ ⊗ dqΣ +
∂2S

∂qΛ∂qΣ

dqΛ ⊗ dqΣ

)

(2.28)

Equation (2.28) implies that the Hessian matrix (1.7) is negative-definite.

Comparison of (2.28) with a different evaluation of the metric in Darboux coordi-

nates (2.42) in section 2.4 , will allow us to prove that M = −H, as asserted in the

introduction.

2.3 The Kähler form

In rigid special geometry the symplectic holomorphic vector V = (XΛ, FΛ) defines the

Kähler form through the formula [16]

ΩIJdV I ∧ dV̄ J = −dXΛ ∧ dF̄Λ + dFΛ ∧ dX̄Λ (2.29)

by writing XΛ = pΛ + iφΛ , FΛ = qΛ + iψΛ, we find

−2dpΛ ∧ dqΛ − 2dφΛ ∧ dψΛ (2.30)

On the other hand, if we compute (using the property dXΛ ∧ dFΛ = 0)

d(XΛ + X̄Λ) ∧ d(FΛ + F̄Λ) = dXΛ ∧ dF̄Λ + dX̄Λ ∧ dFΛ

= (dXΛ ∧ dF̄Λ − dFΛ ∧ dX̄Λ) = 4dpΛ ∧ dqΛ (2.31)

the following relation must hold,

dpΛ ∧ dqΛ = dφΛ ∧ dψΛ (2.32)

We postpone in proving (2.32) but simply observe that

ω =
i

4
ΩIJdV I ∧ dV̄ J =

i

2
ΩIJdP I ∧ dP J = idqΛ ∧ dpΛ (2.33)

2.4 The Kähler metric

We now consider the Kähler metric in complex coordinates. Let us first note a basic identity

satisfied by the complex symplectic differential

dV = (dXΛ, dFΛ) = (dXΛ, FΛΣdXΣ)

and the M matrix defined in (1.6). It is easy to see that

MdV = iΩdV (2.34)

and also to recall that M is real, symmetric and symplectic, i.e. that it satisfies

MΩM = Ω (2.35)
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The basic identity (2.34) allows us to prove that

dV̄ M(F)dV = idV̄ ΩdV = i〈dV̄ , dV 〉 = i(dX̄Λ, dF̄Λ)

(

−dFΛ

dXΛ

)

(2.36)

= i(dXΛdF̄Λ − dX̄ΛdFΛ) = idXΛdX̄Σ(F̄ΛΣ − FΛΣ) = 2dXΛdX̄Σ=FΛΣ

Therefore the (positive-definite) Kähler metric is

2=FΛΣ = ∂Λ∂̄ΣK K = −i〈V, V̄ 〉 (2.37)

Let us now consider the Darboux (special) coordinates

P I = (<XΛ,<FΛ) = (pΛ, qΛ)

and

II = (=XΛ,=FΛ) = (φΛ, ψΛ)

such that

dV I = dP I + idII dV̄ I = dP I − idII

In components we have

dV IdV̄ J = (dP I + idII)(dP J − idIJ) = (dP IdP J + dIIdIJ)+ i(dIIdP J − dP IdIJ) (2.38)

MIJdV IdV̄ J = MIJ(dP IdP J + dIIdIJ) (2.39)

We now compute dIIdIJ by using the following property

II =

(

φΛ

ψΛ

)

=

(

∂S
∂qΛ

− ∂S
∂pΛ

)

= Ω′IJ ∂S

∂P J
= −Ω

∂S

∂P
(2.40)

where Ω′IJ = −ΩIJ so that Ω′Ω = 1. It then follows that

dII = Ω′HdP (2.41)

where H is the (real symmetric) Hessian of S(P ). By inserting (2.41) into (2.39) we obtain

MIJdV I ⊗ dV̄ J = (M − HΩMΩH)IJdP I ⊗ dP J (2.42)

by comparing eq. (2.28) with (2.42) we get

MIJdV I ⊗ dV̄ J = −2HIJdP I ⊗ dP J (2.43)

eqs. (2.42) and (2.43) then imply that M = −H. The same argument can be used for the

Kähler form to prove equation (2.32). In fact

ΩIJdV I ∧ dV̄ J = ΩIJ(dP I ∧ dP J + dII ∧ dIJ) (2.44)

by use of (2.40), (2.41) we get

ΩIJdV I ∧ dV̄ J = dP I ∧ dP J(Ω − MΩΩΩM)IJ (2.45)

and, using Ω3 = −Ω, MΩM = Ω, we get

ΩIJdV I ∧ dV̄ J = 2ΩIJdP I ∧ dP J (2.46)

which is nothing but equation (2.33)

– 8 –
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2.5 The hyperkähler metric

The Darboux coordinates give also a striking simplification [17] of the metric of the real

4n-manifold of the hypermultiplet geometry, which is obtained by the c-map introduced

by [18] and which associates to any special Kähler manifold of dimension n an hyperkähler

manifold of complex dimension 2n. Furthermore, as discussed in [26], this manifold has at

least 2n isometries (2n + 3 in the local case which come from the c-map construction [26]).

The hypermultiplet geometry, as described in [18], has a metric of the form2 [18, 26, 27]

gΛΣ̄dzΛ ⊗ dz̄Σ + 2MIJ(z, z̄)dZI ⊗ dZJ (2.47)

where ZI = (ζΛ, ζ̄Λ) are 2n real coordinates associated to a symplectic real vector Z and

gΛΣ̄ is the original Kähler metric.

By adopting Darboux coordinates and noticing that M = −H equation (2.46) takes

the simple form

−2
∂2S

∂P I∂P J
(dP I ⊗ dP J + dZI ⊗ dZJ) =

∂2K

∂U I∂ŪJ
dU I ⊗ dŪJ (2.48)

It is immediate to see that (2.48) is a Kähler metric, for a complex 2n-dimensional manifold

with 2n complex coordinates given by

U I =
1

2
(P I + iZI) (2.49)

and Kähler potential given by (1.16). Interestingly enough the hamiltonian function S(P )

has a double role. In the original symplectic manifold M of complex dimension n, its

Hessian matrix in Darboux coordinates is the metric on the manifold. Considered as a

function of “complex coordinates” U I , it is the Kähler potential on the cotangent bundle

(of the special manifold M) with real dimension 4n.

Note the obvious 2n isometries

U I 7−→ U I + iaI (2.50)

as implied by the analysis of [26].

3. Central charges and special coordinate identities in complex and real

coordinates

In the present section we discuss identities and relations of special geometry in presence of

a background charge real symplectic vector Q = (mΛ, eΛ). In terms of the special geometry

complex sections the “central charge” function is given by

Z = 〈Q,V 〉 = QT ΩV (3.1)

2Note that because of property (2.35) if we lower the indices ZI the second term in (2.47) becomes

2(M−1)IJ
dZI ⊗ dZJ . This agrees with the hypermultiplet metric as given in [19].

– 9 –
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where scalar symplectic products are understood. In local special geometry Z is a section

of a U(1) bundle over M and it is conveniently written in terms of symplectic sections over

U(1) [24, 23, 8]

ZL = 〈Q,V L〉

V L = (LΛ,MΛ) i〈V L, V̄ L〉 = 1 (3.2)

so that

K = − log(i(X̄ΛFΛ − XΛF̄Λ)) (3.3)

In the rigid case the Kähler potential is rather given by

K = −i〈V, V̄ 〉 = −i(X̄ΛFΛ − XΛF̄Λ) (3.4)

so that

KΛΣ̄ = 2=FΛΣ > 0

Note that in the local case =FΛΣ is a matrix of lorentzian signature [23] with n positive

and one negative eigenvalues, while the matrix N

NΛΣ = h̄IΛ(f̄−1)IΣ

(where h̄IΛ, f̄IΛ are (n + 1) × (n + 1) matrices which are the components of the sections

D̄iV̄ , I = 1, . . . , n, and V, I = 0) is negative-definite (in the rigid case N 7→ F̄ so that

=N 7→ −=F , and =F becomes positive-definite and is an n×n instead of an (n+1)×(n+1)

matrix).

In the local case, if we define the U(1) covariant derivatives DiZ
L (D̄īZ

L = 0), DiV
L

in terms of the U(1) sections ZL and V L, then the following identity is true3 [28]:

Q − iΩM(N )Q = −2iV̄ LZL − 2igij̄DiV
LD̄j̄Z̄

L (3.5)

with the (local) special geometry identity

M(N )V L = iΩV L (3.6)

where M(N ) is the same matrix as in (1.6) but with F 7−→ N .

Note that if in (3.5) we take the scalar product with Q, since 〈Q,Q〉 = 0 we obtain

the black-hole potential as [8]

−
1

2
QT M(N )Q = |ZL|2 + DiZ

LD̄j̄Z̄
Lgij̄ = VBH (3.7)

On the other hand, by multiplying by V and using the fact that MV = iΩV , we obtain

〈Q,V 〉 = Z

3Taking the real part of (3.5) we obtain the identity used in [29 – 31]. This identity has recently been

generalized in the presence of more general fluxes in ref. [32].
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The rigid formula that replaces (3.5) is

Q + iΩM(F)Q = −2igij̄∂iV ∂̄j̄Z̄ (3.8)

which implies the rigid formula

V =
1

2
QT M(F)Q = gij̄∂iZ∂̄j̄Z̄ (3.9)

Note that (3.9), with respect to (3.7), loses the graviphoton charge contribution and it is

identical to the N = 1 rigid formula for chiral multiplets of superpotential Z.

This formula coincides with the superpotential contribution to the N = 2 potential

considered in ref. [33]. From (3.8) we also see that at a supersymmetric extremum ∂iZ = 0

implies Q = 0, something which is different from the local case.

The local supersymmetric attractor point

DiZ
L = 0

gives, instead, the so called “BPS attractor equations”:

Q = −i(V̄ LZL − V LZ̄L) (3.10)

ΩM(N )Q = V̄ LZL + V LZ̄L (3.11)

The rigid identities (3.8) can be written for real Darboux symplectic special coordinates

by noticing that

Z = 〈Q,V 〉 = pΛeΛ − mΛqΛ + i(φΛ − mΛψΛ) = Z(Q,P, I) (3.12)

By using now the property that

I = Ω′ ∂S

∂P

we get
∂Z

∂P I
= −ΩQ + iHQ = τQ (3.13)

with τ = −Ω + iH, τ = −τ †.

Note that, as a consequence of the fact that HΩH = Ω we have

τΩτ = 2τ τΩτT = 0

The potential becomes

V (P,Q) = −
1

2
QT HQ (3.14)

3.1 Local special geometry

We finally discuss further identities of local special geometry. Since

V = (LΛ,MΛ = NΛΣLΣ) (3.15)
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and also

MΛ = FΛΣLΣ (3.16)

(whenever FΛ = ∂ΛF) it is also true that, in addition to (3.6), we have

M(F)V L = iΩV L (3.17)

by further use of the identity

dMΛ = FΛΣ∆XΣdL∆ + FΛΣdLΣ = FΛΣdLΣ (3.18)

(because FΛΣ∆XΣ = 0) it is also true, as in the rigid case, that

M(F)dV L = iΩdV L (3.19)

By using the definition

DiV
L = ∂V L +

1

2
KiV

L (3.20)

we have

M(F)DiV
L = iΩDiV

L (D̄īV
L = 0) (3.21)

where Di is a U(1) covariant derivative.

The Kähler metric on the manifold is given by [24]

gL = i〈D̄V̄ L,DV L〉 = iD̄V̄ LΩDV L (3.22)

By using the previous relations we get the equivalent expression

gL = (D̄V̄ LM(F)DV L) (3.23)

Formula (3.23) is the local analogue of (2.36) and it will be useful to formulate local special

geometry in Darboux real special coordinates.
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