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ABSTRACT: We exploit some relations which exist when (rigid) special geometry is for-
mulated in real symplectic special coordinates P! = (p®,qa), I = 1,...,2n. The central
role of the real 2n x 2n matrix M (RF,3F), where F = Opr0xF and F' is the holomorphic
prepotential, is elucidated in the real formalism. The property MQM = 2, where § is
the invariant symplectic form, is used to prove several identities in the Darboux formu-
lation. In this setting the matrix M coincides with the (negative of the) Hessian matrix
H(S) = % of a certain hamiltonian real function S(P), which also provides the metric
of the special Kéhler manifold. When S(P) = S(U +U) is regarded as a “Kéhler potential”
of a complex manifold with coordinates U! = %(PI +i21), it provides a Kihler metric of
a hyperkéahler manifold, which describes the hypermultiplet geometry obtained by c-map

from the original n-dimensional special Kéahler structure.
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1. Introduction

Special geometry [[-[] plays an important role in the description of the moduli space
of Calabi-Yau compactifications for supergravity effective actions down to D = 4 dimen-
sions [H] and also for more general compactifications when fluxes [5, fi] of different nature
are turned on.

More interestingly, special geometry has served as a basis to study the so-called “attrac-
tor mechanism” [[§—[Ld] for black hole backgrounds preserving at most four supercharges.

In the rigid case [[LI]-[14], special geometry was an important tool for the Seiberg-
Witten [[L§] analysis of non-perturbative properties of N = 2 super Yang-Mills theories.
An important ingredient in special geometry is the existence of a flat symplectic bundle
with structure group Sp(2n,R), (Sp(2n + 2,R) in the local case) [, [[6, [[7, [Lq] over the
special Kahler manifold of complex dimension n, n being the number of vector multiplets
in the theory.

It is the aim of the present work to elucidate some properties of such a rich struc-
ture when Darboux real special symplectic sections are adopted [[[§, [L6, [, [[9] for the
description of underlying mathematical structure. This description is particularly suitable
when background charges are introduced which are related to fluxes of vector field-strength
2-forms over the space-time manifold. Such a description has recently been used to sim-
plify the entropy area formula [R(] for extremal black holes and its relation to superstring
theory [RI]. We will limit ourselves to giving general results for the case of rigid special ge-
ometry but many of these results can be extended to the local case which will be described
elsewhere.



We consider (rigid) special geometry in real special (Darboux) coordinates P! = (p?, qn),
A =1,...,n with the Kéhler 2-form

w = idgy A dp® = %dP/\QdP (1.1)
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The special geometry data turn out to be encoded in a real “Hamiltonian” function
S(p, q), originaly introduced by Cecotti et al. [I§] and by Freed [[Lf], which is the Leg-

endre transform of the imaginary part of the holomophic prepotential F'(X A) of special
geometry [B, H, B-R4]. The holomorphic symplectic sections

where

is the symplectic invariant form.

V = (XA Fy) (1.2)

are related to the real variables as follows:

g
25 (p,
%FA:(]A %FAzwA:_$ (1.4)

If we encode the imaginary parts in the symplectic real vector I7 = (¢, 1), it turns out
that

oS
I _ olJ
I'= =25 (1.5)

01
Q/IJ:_Q —
=)

In this note we will show the special property played by the 2n x 2n real symmetric positive-

definite matrix [, §

with

SF + RFIFIRF —RFIF!

M(RF,SF) = 1.6
(RF,SF) ( —QFIRF SF-1 ) (1.6)

which in the real formulation turns out to be related to the Hessian matrix

9%S
Hpy(S) = 2PTop7 (1.7)
namely

M(p,q) = —H(S) (18)

Note that M is positive as a consequence of the fact that SF is positive [, §] which is
required by the positivity of the metric (see eq. (R.22)). The matrix M is known to play
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a special role when a background (symplectic) charge vector @@ = (m”,ey) is introduced

and a “central charge” holomorphic function
Z=(Q,V)=QTaV = X"ey — m"Fy (1.9)

is defined.
In rigid special geometry! the following identity holds (for the local case, see later):

Q +iQMQ = —2ig" 9\ Vs Z (1.10)
Multiplying by @7Q on the left we get the “central charge” potential function
1 - o
SQTMQ = g" 052057 (1.11)

where gA2 is the inverse of the metric defined below.
The Hessian ([L.7) gives also the metric of the original Kéhler manifold

2

K _
gAidZA ® dZE = 8;\de/\ ® d)(E (112)

where special coordinates z* = X* have been adopted and
K = —i(XAFy — XMEy) = —i(V, V)

namely
gasdz® ® dz¥ = —2H;;dP! @ dP’ (1.13)

Another interesting observation is related to the c-map hypermultiplet geometry as defined
in references [[I§, 6.

By adopting real symplectic coordinates Z! = (¢4, ¢ A) for the (other half) hypermul-
tiplet coordinates, the hyperkiihler metric has the form [1§, B6, B7]

gasdz® @ dz5 + 2M;1 (2, 2)dZ" @ dZ7 (1.14)

Adopting Darboux coordinates for the Kéhler manifold M, and because of ([.§) and ([.13),
we then have

028
oPlopP’ (
By complexifying the Darboux coordinates as Ul = (P +iZ!) we see that ([.14) is a
Kahler metric with Kéahler potential [[L7]

-2 dP' @ dP’ +dz' ® dz”) (1.15)

K(U,U)=-85(U + 1) (1.16)
Note that, as expected from the results of [Pf], the metric ([.14) has 2n real isometries

Ul — Ul +id! (1.17)

See ref. @] for an intrinsic definition.



In the “complex” formulation of Cecotti et al. [[[§], where the (second half of the) hyper-
multiplet coordinates were denoted by Wj, the same isometries were acting as

Wp —— Wp + iap (1.18)
Wp — Wi + (%F)Azﬁz (1.19)

and the Kéhler potential was [[[§]
N(XAWy) = K(X,X) + (SFHAEW, + W) (W + Wx) (1.20)

In the local case a particular choice of real coordinates has recently been used [R0, [[J] in
conjunction with the modification of the black hole entropy formula due to higher curva-
ture corrections and also in relating the entropy area formula with the topological string
partition function [PJ].

The paper is organized as follows. In section ] we give an explicit derivation of the
special Kahler metric in the Darboux coordinates [E, B] and, by using the properties
of the M matrix we arrive at equations ([.7), (.13), (L.1J). In section [ we discuss real
special coordinates in connection with the central charge function. We finally comment
on some central charge relations and some metric differential identities for local special
geometry.

2. Complex and real special coordinates

2.1 Rigid real sections and the functional S(p, q)

Let (X, F)) be the rigid holomorphic symplectic sections depending on the holomorphic
coordinates 2" [4]

XA =XxMz)  Fr=Fa(2) (2.1)

Under some general assumptions we can take X as the holomorphic coordinates X = 24

such that OF(X)
FA(X) = 53X A (2.2)

for a suitable function F'(X).
The holomorphicity condition reads

Xt =0 InFy =0 (2.3)

Decomposing (X A F) in terms of real and imaginary parts we can write the holomorphic
symplectic sections in terms of real variables

XA =p* +igh  Fa=qa+iva (2.4)
Define the function L = SF > 0, the imaginary part of F'(X). Then it can be proved that

(qa, ¢™) and (p™,4n) are pairs of conjugate variables for L

oL

qn = EERS (2.5)
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= 2.6
A aph (2.6)
We perform a Legendre transform on L of the form
S(p,q) = ar - " (p, ) — L(p, $(p. q)) (2.7)
where we have to invert equation (R.5) to write ¢ = ¢(p, ¢). Then, the next set of equations
follows:
oS
A
= —_ 2.8
= 28)
oS
by = 22 2.9
YA aph (2.9)
Our change of coordinates (p*, ¢*) — (p*, ¢x) is of the form
p” =05t gn=gs(pt oY) (2.10)
and, accordingly, the inverse change of coordinates (pE, qs) — (pA7 ¢A) is
Pt =o8p” ¢t =6 01" gn) (2.11)

In the following we use the notation

of (x,y)| _ Of of(x,y)| _ of

or |y Ox oy |z Oy

where the role of f(z,%) will be played by ¢s(p, ¢), ¢*(p, q) as defined in eqs. (.10), (-11)).
Let J be the Jacobian matrix. It follows from J(J)~! = 1 = (J)~1J that

dgz 00" 5 gz O°S

e 2= T - 1= 2.12
90h dqr T~ 06" dgndr (212)
i.e. .
2 — 2
dgs _ (9”8 __9L (2.13)
I dqn0qs P oPp™
and we also have
dgs n  Ogx 00" Ogs 9*s ' &S
T T aek gt ~ aph T T\ Ogndan ) Dagnopr ! @14)

In fact, equations (R.12) to (R.14) follow not only from the Jacobian but also from the
holomorphicity conditions (B.3). These also imply

dgs Oy Oqr OYx
__Ovs _ 9.1
958~ T apt  op® dar (2.15)

where 1) = ¢ (p, q) and its partial derivatives are computed following the notation explained

before. The analyticity of L = &F, for F' holomorphic, also imply
9L O*L 9L L
oor06s oo " 5op" ~ phagY
In terms of S eq. (R.1§) can be written as
< 9% >‘1 S oqr S
dgndqn )  OpEoph  Op* Dgrop®

These relations will be useful when simplify the metric in the next section.

(2.16)



2.2 Kahler potential and metric

In this section we show that the Kéahler potential K can be expressed directly in terms of
S(p,q). Then, the metric can also be expressed directly in terms of S(p, q), since

9= grsdX" ®dX* (2.17)
with 2
INS = HxRpxe (2.18)
In the rigid case the Kéahler potential is
K =i(X Fy — X2 Ey) (2.19)
The Kéhler form then is
w= —i@AégK dXAM N dXTE = —%%FAE dXM A dXE (2.20)
so that
w = idgp A dp™ (2.21)
is a symplectic form. The metric will be
gas, = 23Fax >0 (2.22)

Using equations (R.19) to (B.1d), one arrives at

925 dqr 0°S 928 \
Iax (apAapZ T ot aqpapA> (anaqz> (223)

Note that the symmetry properties Fy, = Fxp imply

dqn  Ogs
dgr 0*S ~ Oqr %8 (2.25)
A dqrop™ — 9¢* dqroph '

2 2
dgr S dgr %S (2.26)

opA Bqrop*  Op* Aqrop”

which will help in the simplifications.

The change of variables in the differentials gives

_ 928 %8 928 928
dXD @ dX* = [ 68s6% j o — oA ) dpt @ dp?
¥ ( O Dandp” ogsap® '\ agaopr 2 T Bgmopa ) ) O P

+< #S oS PSS H,( S o S 5A>>dF®d
9gr0qa OgsOpr | 9gadpr dgs0qa Dqrdga T Oqudga ")) P T A
928 9%S
(aQA3QF Jdqs0qna

) dqr ® dga (2.27)



Finally, using again equations (R.13) to (2.16), and (2.24) to (R.26) the following expression

is obtained:

2 2 2

0°S A b A
= =2| z==z=5d d 2 d d
9(p,q) (ap/\apz P @apT + Iprags, P dan 9qr0qs

dgp ® dqg> (2.28)

Equation (R.2§) implies that the Hessian matrix ([.7) is negative-definite.

Comparison of (R.2§) with a different evaluation of the metric in Darboux coordi-
nates (P-49) in section P4 , will allow us to prove that M = —H, as asserted in the
introduction.

2.3 The Kahler form

In rigid special geometry the symplectic holomorphic vector V = (XA, Fy) defines the
Kiihler form through the formula [[i6]

QrsdVIAdV? = —dXM N dFy + dFy AdXD (2.29)
by writing X* = p* +i¢™ , Fo = qa + iy, we find
—2dp™ A dgn — 2d™ A dipa (2.30)
On the other hand, if we compute (using the property dX ANdEy = 0)

AXDN + XM ANA(Fy + Fr) = dXM AdEy + dXD A dFy
= (dXM NdFy — dFy A dX™) = 4dp™ A dga (2.31)

the following relation must hold,
dp™ A dgy = do™ A dipp (2.32)
We postpone in proving (2.39) but simply observe that
w= %QI JdVIndVYT = %QI 7dPT A dP7 = idga A dp™ (2.33)

2.4 The Kahler metric

We now consider the Kéhler metric in complex coordinates. Let us first note a basic identity

satisfied by the complex symplectic differential
dV = (dX*,dF)y) = (dX*, FAsdX®)
and the M matrix defined in (E) It is easy to see that
MdV =iQdV (2.34)
and also to recall that M is real, symmetric and symplectic, i.e. that it satisfies

MQM = Q (2.35)



The basic identity (R.34)) allows us to prove that

AV M (F)dV

. _ o o [ —dF
idVQdV = i(dV,dV) = i(dX",dF)) ( d;l( AA> (2.36)

= i(dXNdF) — dXMNdFy) = idX2dX® (Fps — Fry) = 2dXYdX TS Fpx
Therefore the (positive-definite) Kéhler metric is
23F)\y = Op\0s K K = —i(V,V) (2.37)
Let us now consider the Darboux (special) coordinates
Pl = (RXY RFy) = (0", qn)

and
1" = (SXA,SFy) = (6", 9n)
such that
dvl =dpr! +idr"  av! = dpP! —idl’
In components we have

dvlav’ = (dP! +idI")(dP? —idl”) = (dP'dP? +dI'dI’) +i(dI'dP’ — dP'dI”) (2.38)

M;pydvidv? = My (dPtdpP’ + drtdr”) (2.39)

We now compute dI’dI”’ by using the following property

A 925

= (ZA> = <_a;a%> = Q’”% = —Qg—i (2.40)

where Q7 = —Q;; so that Q'Q = 1. It then follows that
dIf = Q'HdP (2.41)
where H is the (real symmetric) Hessian of S(P). By inserting (R.41]) into (.39) we obtain
MpydV! @ dV’ = (M — HOMQH);;dP! © dP’ (2.42)

by comparing eq. (£.2§) with (R.43) we get
MpydV! @ dV’ = —2H; ;dP! @ dP’ (2.43)

egs. (R.49) and (R.43) then imply that M = —H. The same argument can be used for the
Kihler form to prove equation (2.32). In fact

QrrdViAndVY? = Qpy(dP! A dPY 4 dIt AdIY) (2.44)
by use of (R.40), (2.41)) we get
QrsdVIAdVY? = dPT A dP7(Q — MQQQM);, (2.45)
and, using Q3 = —Q, MQM = Q, we get
QrrdvI A adv? =207 ;dPT A dPY (2.46)

which is nothing but equation ()



2.5 The hyperkihler metric

The Darboux coordinates give also a striking simplification [[7] of the metric of the real
4n-manifold of the hypermultiplet geometry, which is obtained by the ¢-map introduced
by [ and which associates to any special Kéhler manifold of dimension n an hyperkihler
manifold of complex dimension 2n. Furthermore, as discussed in [2€], this manifold has at
least 2n isometries (2n + 3 in the local case which come from the c-map construction [24)]).
The hypermultiplet geometry, as described in [[[§], has a metric of the form? [§, Bf, 7]

grsdz® @ dZ° + 2M;p (2, 2)dZ" © dZ7 (2.47)

where Z! = (¢M,(y) are 2n real coordinates associated to a symplectic real vector Z and
gas is the original Kahler metric.

By adopting Darboux coordinates and noticing that M = —H equation () takes
the simple form

0 05 (dP' @ dP’ +dz! @ dz7) = 0K aU" @ dU”’ (2.48)
oPIopP7 - oulau’ '

It is immediate to see that () is a K&hler metric, for a complex 2n-dimensional manifold
with 2n complex coordinates given by

1
Ul = §(P1 +iz") (2.49)

and Kihler potential given by ([.16). Interestingly enough the hamiltonian function S(P)
has a double role. In the original symplectic manifold M of complex dimension n, its
Hessian matrix in Darboux coordinates is the metric on the manifold. Considered as a
function of “complex coordinates” U”, it is the Kéhler potential on the cotangent bundle
(of the special manifold M) with real dimension 4n.

Note the obvious 2n isometries
Ul — U +id! (2.50)
as implied by the analysis of [26].

3. Central charges and special coordinate identities in complex and real
coordinates

In the present section we discuss identities and relations of special geometry in presence of

A

a background charge real symplectic vector @Q = (m*, ep). In terms of the special geometry

complex sections the “central charge” function is given by

Z=(Q,V)=qQTav (3.1)

ZNote that because of property () if we lower the indices Z; the second term in |m becomes
2(M_1)”dZ1 ® dZ;. This agrees with the hypermultiplet metric as given in [@



where scalar symplectic products are understood. In local special geometry Z is a section
of a U(1) bundle over M and it is conveniently written in terms of symplectic sections over

U(1) 4, B3,

ZL = <Q7 VL>
vE= (A My ivEVE =1 (3.2)
so that
K = —log(i(X Fy — X Fy)) (3.3)

In the rigid case the Kéahler potential is rather given by
K = —i(V,V) = —i(XAFy — X Fy) (3.4)

so that
KAE = 2%FAZ >0

Note that in the local case SFpy is a matrix of lorentzian signature [@] with n positive
and one negative eigenvalues, while the matrix N

Naz =hia(fHE

(where hra, fia are (n + 1) x (n 4 1) matrices which are the components of the sections
D;V, I =1,...,n,and V, I = 0) is negative-definite (in the rigid case N' — F so that
SN +— —QF, and SF becomes positive-definite and is an nxn instead of an (n+1)x (n+1)
matrix).

In the local case, if we define the U(1) covariant derivatives D;Z%* (D;Z% = 0), D;V'*
in terms of the U(1) sections Z¥ and V¥, then the following identity is true® [2g:

Q —iOMN)Q = ~2iVEZE — 2igi D,V D; 2% (3.5)
with the (local) special geometry identity
MWN\N)VE =iVt (3.6)

where M (N) is the same matrix as in ([[.§) but with F —— N.
Note that if in (B.5) we take the scalar product with @, since (@, Q) = 0 we obtain
the black-hole potential as

1 =
—§QTM(N)Q =|Z"?+ D;Z"D; 2"V = Vi (3.7)
On the other hand, by multiplying by V and using the fact that MV = iQV | we obtain

@QV)=2

3Taking the real part of (@) we obtain the identity used in @7@] This identity has recently been
generalized in the presence of more general fluxes in ref. [@]

,10,



The rigid formula that replaces (B.9) is
Q + QM (F)Q = —2ig" 0,V 8;Z (3.8)
which implies the rigid formula

V= Q" M(FQ = 00252 (3.9)

Note that (B.9), with respect to (B.7), loses the graviphoton charge contribution and it is
identical to the N = 1 rigid formula for chiral multiplets of superpotential Z.

This formula coincides with the superpotential contribution to the N = 2 potential
considered in ref. [BJ]. From (B.§) we also see that at a supersymmetric extremum 8;Z = 0
implies @ = 0, something which is different from the local case.

The local supersymmetric attractor point
D;Zb =0
gives, instead, the so called “BPS attractor equations”:

Q=—i(Vtzl —vlzh) (3.10)
OM(N)Q =VEizl yvEZE (3.11)

The rigid identities (B.§) can be written for real Darboux symplectic special coordinates
by noticing that

Z=(Q,V) =p'er —miqn +i(¢" —m" ) = Z(Q, P.1) (3.12)
By using now the property that
oS
I=0—
oP
we get
97 Q+iHQ=1Q (3.13)
3pT = i =T .

with 7 = —Q +iH, 7 = —71.
Note that, as a consequence of the fact that HQH = () we have

QT =27 Ol =0

The potential becomes
1
V(P,Q) =—5Q"HQ (3.14)

3.1 Local special geometry

We finally discuss further identities of local special geometry. Since

V = (LA, My = NasL¥) (3.15)

— 11 —



and also
My = FysL* (3.16)

(whenever Fj = 05 F) it is also true that, in addition to (B.6), we have
M(F)VE =iVt (3.17)
by further use of the identity
dMp = FasaXZdLA + FasdL® = FysdL® (3.18)

(because Fyxa X = 0) it is also true, as in the rigid case, that

M(F)dvt =iQadv* (3.19)
By using the definition
1
DVt =ovl + 5KiVL (3.20)
we have
M(F)D;VE =iaD,vl  (D;vE =0) (3.21)

where D; is a U(1) covariant derivative.
The Kéhler metric on the manifold is given by [P4]

g" =i(DV* DVl =iDViQDVE (3.22)
By using the previous relations we get the equivalent expression
gt = (DVEM(F)DVE) (3.23)

Formula (B.29) is the local analogue of (B.36) and it will be useful to formulate local special

geometry in Darboux real special coordinates.
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